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Abstract.  Stick-slip sliding is observed at various scales in fault sliding and the accompanied seismic events.  It is 10 

conventionally assumed that the mechanism of stick-slip over geomaterials lies in the rate dependence of friction. However, 11 

the movement resembling the stick-slip could be associated with elastic oscillations of the rock around the fault, which 12 

occurs regardless of rate properties of the friction. In order to investigate this mechanism, two simple models were 13 

considered: a mass-spring model of Burridge and Knopoff type (BK model) and a one-dimensional (1D) model an infinite 14 

elastic rod driven by elastic shear spring.   15 

The results show that frictional sliding in the case of BK model demonstrates stick-slip-like motion even when the friction 16 

coefficient is constant. The 1D rod model predicts that any initial disturbance moves with a p-wave velocity, that is 17 

supersonically with the amplitude of disturbances decreasing with time. This effect might provide an explanation to the 18 

observed supersonic rupture propagation over faults.  19 

1 Introduction  20 

Earthquakes can lead to catastrophic structural failures and may trigger tsunamis, landslides and volcanic activity (Ghobarah 21 

et al., 2004; Bird and Bommer, 2004). They are generated at faults and are either produced by rapid (sometimes 22 

‘supersonic’) propagation of shear cracks/ruptures along the fault or originated in the stick-slip sliding over the fault. The 23 

velocity of rupture propagation is crucial for estimating the earthquake damage. Rupture velocities can be determined by 24 

comparison its speed with the speeds of stress waves in the rupturing solid (Rosakis, 2002). There are several types of 25 

rupture propagation: supersonic (V>VP), intersonic (VS<V<VP), subsonic (V<VS), supershear (V>VS), sub-shear (VR<V<VS) 26 

and sub-Rayleigh (V<VR). According to the data of seismic observation of crustal earthquakes, most ruptures propagate with 27 

an average velocity that is about 80% of the shear wave velocity (Heaton, 1990). In some cases, however, supershear 28 

propagation of earthquake-generating shear ruptures or sliding is observed (Archuleta, 1984; Bouchon et al., 2000, 2001; 29 

Dunham and Archuleta, 2004; Aagaard and Heaton, 2004). These observations gave rise to the concept of supershear crack 30 

propagation (e.g., Bizzarri and Spudich, 2008; Lu at al., 2009; Bhat et al., 2007; Dunham, 2007).  However, there is some 31 

debate regarding to the data interpretation (Delouis et al., 2002; Bhat et al., 2007) due to the lack of strong motion recording.  32 

For instance, it was suggested that the 2002 Denali Earthquake was propagated at supershear speed about 40 km (Dunham 33 

and Archuleta, 2004). This conclusion was based on a single ground motion record. However, the separate inversion of the 34 

individual data sets may provide only a partial image of the rupture process of an earthquake. The joint inversion of the 35 

combined data sets gives a more robust description of the rupture. The recent studies aimed at deriving kinematic models for 36 

large earthquakes have shown the importance of the type of data used. It has been shown that slip maps for a given 37 

earthquakes may vary significantly (Cotton and Campillo, 1995; Cohee and Beroza, 1994a).  38 

Sliding over pre-existing fractures and interfaces is one of the forms of instability in geomaterials. It is often accompanied by 39 

stick-slip – a spontaneous jerking motion between two contacting bodies, sliding over each over. It is assumed that the 40 
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mechanism of stick-slip lies in intermittent change between static and kinetic friction and the rate dependence of the friction 41 

coefficient (Popp and Rudolph, 2004).  42 

The investigation of the friction law on geological faults is the key element in the modelling of earthquakes. Rate- and state-43 

dependent friction laws successfully modelled frictional sliding and earthquake phenomena. These laws were proposed by 44 

Dieterich, Ruina and Rice (Dieterich, 1978; Ruina, 1983; Rice, 1983). There are two types of frictional sliding between 45 

surfaces, including the tectonic plates. The first type occurs when two surfaces slip steadily (V=V0 condition, where V - is 46 

relative velocity, V0 - is the load point velocity) and is an analogue to the fault creep (Byerlee and Summers, 1975). In the 47 

stable state the sliding over discontinuities (faults, fractures) is prevented by friction. However, the faults are continuously 48 

subjected to variations in both shear and normal stresses and can produce sliding over initially stable fractures/interfaces. In 49 

the Earth’s crust the increase in shear stress is obviously a consequence of tectonic movement, while oscillations in the 50 

normal stress can be associated with the tidal stresses or seismic waves generated by other seismic events. These can 51 

generate the second dynamic state when the sliding occurs jerkily (slip, stick and then slip again). This type is calling “stick-52 

slip” sliding and has cyclic behaviour. Both types of sliding are usually investigated using a simple spring-block model 53 

introduced by Burridge and Knopoff in 1967 (Turcotte, 1992).   54 

Modelling of frictional sliding is an important tool for understanding the initiation, the development of rupture, and the 55 

healing of faults. Many models and numerical methods were developed to describe seismic activity and the supershear 56 

fracture/rupture propagation (Noda and Lapusta, 2013; Lapusta and Rice, 2003; Lu at al., 2009; Lapusta et al., 2000; 57 

Sobolev, 2011; Bag and Tang, 1989; Harris and Day, 1993). 58 

In this paper, we however concentrate on the stick-slip-like movement occurring under rate-independent friction due to the 59 

eigen oscillations of the fault faces and the associated wave propagation. Also a simple mechanism of unusually high shear 60 

fracture or sliding zone propagation is considered. This is the p-sonic propagation of sliding area over a frictional fault. It is 61 

based on the fact that the accumulation of elastic energy in the sliding plates on both sides of the fault can produce 62 

oscillations in the velocity of sliding even if the frictional coefficient is constant. Brace and Byerlee noticed in 1966 that the 63 

stick-slip instabilities in the tectonic plates are associated with the appearance of earthquakes (Feeny et al., 1998; Byerlee, 64 

1970).  65 

2 Single degree of freedom frictional oscillator 66 

This study starts with the self-excited oscillations which may look like stick-slip but occur under constant friction. For this 67 

purpose a single degree of freedom block-spring model is used. A block sliding on a rigid horizontal surface is driven by a 68 

spring whose other end is attached to a driver moving with a constant velocity (Figure 1). The system consists of mass m, 69 

spring of stiffness k and a driver that moves with the constant velocity V0.  Friction is assumed to be cohesionless: Tcr=N, 70 

where Tcr is the force at which sliding starts, N is the normal force and  is the friction coefficient.  71 

 72 
Figure 1: The simple mass-spring model of Burridge and Knopoff type. 73 

 74 

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-82, 2017
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 12 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



3 

 

The system of equations representing the motion of the block reads: 75 

 76 

0
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
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where m is the mass of block, k is the spring stiffness, V0 is the load point velocity, V is the relative velocity, N is gravity 78 

force, T is the shear force, µ is the friction coefficient. 79 

The appearance of the sign function in the system of equations represents the fact that friction always acts against velocity. 80 

Here function sgn(V) is defined as follows: 81 
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In order to represent the system of equations (1) in dimensionless form, it is convenient to introduce a dimensionless time 𝑡∗: 83 

*
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where 𝜔0 is the eigen frequency of the block-spring system, m is the block mass and k is the spring stiffness. 85 

The governing system of equations in dimensionless form reads: 86 
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Here the dot represents the derivative with respect to dimensionless time  𝑡∗ , V T .  88 

 89 

2.1 Behaviour of the system under different initial conditions 90 

In order to demonstrate the behaviour of the system under different initial conditions leading to the steady sliding and stick-91 

slip-type regimes we assume velocity V >0 and consider the block sliding under the following two sets of initial conditions: 92 

(0) 1,  (0) ;    (0) 0,  (0)

(0) 1,  (0) 0;         (0) 0,  (0) 0

(0) 1,  (0) ;     (0) 0,  (0)

V V N V V N

V V V V

V V N V V N

 

 

     

   

   

      (5) 93 

Figure 2 represents the corresponding two types of behaviour of the system (dimensinless velocity vs. dimensionless time). 94 

       95 

 a)    b)   96 

    97 

Figure 2: Block sliding under different initial conditions. 98 
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It is seen that the system exhibits self-excited oscillations even with constant friction coefficient, which somewhat resemble 99 

the stick-slip-type sliding. This is a harmonic motion with the frequency is equal to the eigen frequency of the system. The 100 

friction coefficient only affects the initial conditions. In more detail the behaviour of such a system is investigated in our 101 

previous works (Karachevtseva et al., 2014; Karachevtseva et al., 2014). 102 

 103 

3 Stress wave propagation in frictional sliding (generalisation 1D solid) 104 

The previous section shows the stick-slip-like motion occurring even when the friction coefficient is constant.  Now this 105 

understanding will be generalised to slide over a fault where a stick-slip phenomenon is traditionally flagged as a mechanism 106 

of earthquakes.  For this purpose, following Nikitin (1998) we consider the simplest possible 1D model of fault sliding, 107 

which takes into account the rock elastic response and the associated dynamic behaviour, shown in Figure 3.  108 

To this end, an infinite elastic rod of height (thickness) h, per unit length in the direction normal to the plane of drawing in 109 

Figure 3 and linear density  sliding over a stiff surface is considered. The stiff surface can be though of as a symmetry line, 110 

such that instead of the (horizontal) fault only the upper half of it is considered. The rod is connected to a stiff layer moving 111 

with a constant velocity V0. The connection is achieved through a series of elastic shear springs. Both the elastic rod and the 112 

elastic springs model the elasticity of the rock around the fault, Figure 3. We assume that the system is subjected to a 113 

uniform compressive load N  such that the friction stress is kept constant; it is assumed equal to
fr Nk const   .  114 

 115 

Figure 3: The model of infinitive elastic rod driven by elastic shear spring. 116 

 117 

Let the longitudinal (normal) stress in the rod be σ and the contact shear stress be τ, friction stress τf and the load point 118 

velocity V0.   The equation of movement of the rod reads: 119 

1
( )fr

V

x h t


  

 
  

 
          (6) 120 

where V(x,t) is the velocity of point x of the rod at time t, Figure 3. 121 

If the Young’s modulus of the rod is E, then the Hooke’s law gives
u

E
x







, where u(x,t) is the displacement. After 122 

differentiating the Hooke’s law is expressed as: 123 

V
E

t x

 


              (7) 124 

The elastic reaction of the shear springs is expressed through the following equation 125 
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where k is the spring stiffness relating stress and displacement discontinuity (the difference between the rod displacement 127 

and the zero displacement of the base). In the usual way system of equations (6)-(8) produces the wave equation: 128 

2 2
2 2

2 2
   

V V
c V V u

t x


   
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 
         (9) 129 

where c Eh   is the velocity of the longitudinal wave (p-wave), ( )k h   is what can be regarded as  130 

eigenfrequency of the system consisting as a unit length of the rod considered as a lamp mass on the shear springs. 131 

It is seen that despite frictional sliding between the rod and the stiff surface the waves propagate with the p-wave velocity 132 

determined by the Young’s modulus and density of the rod. So according to the terminology described in Introduction the 133 

wave should be named p-sonic wave. It should be emphasizes that while such waves look like the shear waves they are in 134 

fact compressive waves propagation along the rod, hence the p-wave velocity. 135 

In order to analyse the way the pulse propagates, equation (9) is complemented by initial conditions: 136 

( , ) ( );    ( )
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u x t f x F x
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            (10) 137 

Solution of wave equation (9) can be found by using the Riemann method (e.g., Koshlyakov, 1964). 138 
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The integral from (11) can be found by using the Chebyshev-Gauss method  142 
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 (14) 145 

 146 

3.1 Propagation of an initial disturbance  147 

Figures 3-5 represent the propagation of initial disturbance under the different initial conditions. Particularly, a triangular 148 

displacement impulse and zero velocity were used as initial conditions for Figure 3. For Figure 4 linear and harmonic 149 

functions were used for displacement and velocities as initial conditions.  150 

 151 
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  152 

Figure 3: Propagation of initial disturbance (f (z) = trimf (z, [0 2]); F(z)=0). 153 

 154 

  155 

a) f(z)=2z; F(z)=cos(z);   b) f(z)=sin(z); F(z)=1+z; 156 

               Figure 4: Propagation of initial disturbances. 157 

It is seen that the initial disturbance (impulse) propagating with p-wave velocity keeps its width but the amplitude reduces 158 

with time. Obviously as the impulse propagates it looses energy which goes to increasing the energy of shear springs.  159 

Figure 5 shows the peak of initial disturbance changing with time (here the triangular displacement and zero velocity were 160 

set as initial conditions). 161 

 162 

 Figure 5: Maxima of initial disturbance. 163 
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4 Conclusions 164 

The accumulation of elastic energy in the sliding plates on both sides of the fault can produce oscillations in the velocity of 165 

sliding even when the friction is constant. These oscillations resemble stick-slip movement, but they manifest themselves in 166 

terms of sliding velocity rather than displacement. The sliding exhibits wave-like propagation over long faults. Furthermore, 167 

an infinite elastic rod model shows that the zones of disturbances propagate along the fault with the velocity of p-wave. The 168 

mechanism of such fast wave propagation is the normal (tensile/compressive) stresses in the neighbouring elements (normal 169 

stresses on the planes normal to the fault surface) causing a p-wave propagating along the fault rather than the shear stress 170 

controlling the sliding. This manifests itself as a p-sonic propagation of an apparent shear rupture. 171 

 172 

 173 
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